

Overview

FACHHOCHSCHULE KIEL University of Applied Sciences

- The design of computers
 - It all starts with numbers
 - Building circuits
 - Building computing machines
- Digital systems
- Understanding decimal numbers
- Binary and octal numbers
 - The basis of computers!
- Conversion between different number systems

Digital Computer Systems

- Digital systems consider *discrete* amounts of data.
- Examples
 - 26 letters in the alphabet
 - 10 decimal digits
- Larger quantities can be built from discrete values:
 - Words made of letters
 - Numbers made of decimal digits (e.g. 239875.32)
- Computers operate on *binary* values (0 and 1)
- Easy to represent binary values electrically
 - Voltages and currents.
 - Can be implemented using circuits
 - Create the building blocks of modern computers

Information units

The smallest binary information unit is called a "Bit", derived from the English term"<u>bi</u>nary digi<u>t</u>".

A bit describes the logical state of a two-valued system.

The fact that it describes a minimal system is expressed in the original description, introduced by Claude Shannon:

Basic Indissoluble Unit.

Claude Shannon (1916 - 2001)

Understanding Decimal Numbers

- Decimal numbers are made of decimal digits:
 - **(0,1,2,3,4,5,6,7,8,9)**
- But how many items does a decimal number represent?

 $- 8653 = 8 \times 10^3 + 6 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$

- What about fractions?
 - $-97654.35 = 9x10^4 + 7x10^3 + 6x10^2 + 5x10^1 + 4x10^0 + 3x10^{-1} + 5x10^{-2}$

digit from

latin "digitus" - finger

- In formal notation -> (97654.35)₁₀
- Why do we use 10 digits, anyway?

Understanding Octal Numbers

- Octal numbers are made of octal digits:
 - (0,1,2,3,4,5,6,7)
- How many items does an octal number represent?
 - $(4536)_8 = 4x8^3 + 5x8^2 + 3x8^1 + 6x8^0 = (1362)_{10}$
- What about fractions?
 - $(465.27)_8 = 4x8^2 + 6x8^1 + 5x8^0 + 2x8^{-1} + 7x8^{-2}$
- Octal numbers don't use digits 8 or 9
- Who would use octal number, anyway?

FACHHOCHSCHULE KIEL University of Applied Sciences

Understanding Binary Numbers

- Binary numbers are made of <u>b</u>inary dig<u>its</u> (bits):
 - 0 and 1
- How many items does an binary number represent?

 $- (1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$

• What about fractions?

- $(110.10)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2}$

• Groups of eight bits are called a *byte*

- (11001001)₂

• Groups of four bits are called a *nibble*

- (1101) ₂

Binary Numbers

Presentation of information in binary form:

Area	Definition
Digital Design	"0" and "1"
Physics	" <i>low</i> " and " <i>high</i> "
Logic	"true" and "false"

Convert from Decimal

Convert an Integer from Decimal to Another Base: For each digit position:

- ^o Divide decimal number by the base (e.g. 2)
- The *remainder* is the lowest-order digit
- ^o Repeat first two steps until no *divisor* remains.

Example for (13)_{10:}

		Integer Quotient	:	Remainder	Coefficient
13/2	=	6	+	1	a ₀ = 1
6/2	=	3	+	0	$a_1 = 0$
3/2	=	1	+	1	$a_{2} = 1$
1/2	=	0	+	1	$a_{3}^{-} = 1$
Ansv	vei	⁻ (13) ₁₀	=	(a ₃ a ₂ a ₁ a	$_{0})_{2} = (1101)_{2}$

Convert from Decimal

FACHHOCHSCHULE KIEL University of Applied Sciences

Convert a Fraction from Decimal to Another Base: For each digit position:

- 1. Multiply decimal number by the base (e.g. 2)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for (0.625)_{10:}

	Integer		Fraction	Coefficient
0.625 x 2 =	1	+	0.25	a ₋₁ = 1
0.250 x 2 =	0	+	0.50	a ₋₂ = 0
$0.500 \times 2 =$	1	+	0	a ₋₃ =1
Answer (0.62	25) ₁₀ =	(0.3	a ₋₁ a ₋₂ a ₋₃	$)_2 = (0.101)_2$

The Growth of Binary Numbers

And then: peta, exa, zetta, yotta, xona, weka, vunda, uda, treda, sorta, rinta, quexa, pepta, ocha, nena, minga, luma., etc.

Convert from Decimal

Convert an Integer from Decimal to Octal: For each digit position:

- 1. Divide decimal number by the base (8)
- 2. The remainder is the lowest-order digit
- 3. Repeat first two steps until no divisor remains.

Example for (175) _{10:}	Integer Quotient		Remainder	Coefficient
175/8 =	21	+	7/8	$a_0 = 7$
21/8 =	2	+	5/8	a ₁ = 5
2/8 =	0	+	2/8	a ₂ = 2
Answe	er (175).	10	= (a ₂ a ₁ a ₀)	₂ = (257) ₈

Convert from Decimal

Convert a Fraction from Decimal to Octal: For each digit position:

- 1. Multiply decimal number by the base (e.g. 8)
- 2. The *integer* is the highest-order digit
- 3. Repeat first two steps until fraction becomes zero.

Example for (0.3125)_{10:}

	Integer	Fraction	Coefficient
0.3125 x 8 =	= 2	+ 5	a ₋₁ = 2
0.5000 x 8 =	= 4	+ 0	a ₋₂ = 4

Answer $(0.3125)_{10} = (0.24)_8$

China Jiliang University	FACHHOCHSCHULE KIEL
More Number	

Overview

FACHHOCHSCHULE KIEL University of Applied Sciences

- Hexadecimal numbers
 - Related to binary and octal numbers
- Conversion between hexadecimal, octal and binary
- Value ranges of numbers
- Representing positive and negative numbers
- Creating the complement of a number
 - Make a positive number negative (and vice versa)
- Why binary?

Rep.: Understanding Binary Numbers

- Binary numbers are made of <u>binary digits</u> (bits):
 - 0 and 1
- How many items does an binary number represent?
 - $(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - $(110.10)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2}$
- Groups of eight bits are called a byte
 - (11001001)₂
- Groups of four bits are called a *nibble.*
 - (1101) ₂

Understanding Hexadecimal Numbers

Transistion from the octal to the hexadecimal number system. Example:

octal:	010	000	010	100	001	001	000	011
reorganizing:								
hexadecimal:	010	0 00	001	0100	0010	010	0 00)11

Symbols to define all		
hexadecimal numbers:		
0 1 2 3 4 5 6 7 8 9 <u>A B C D E F</u>		

Hexdecimal Value	Decimal Value
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Understanding Hexadecimal Numbers

• Hexadecimal numbers are made of <u>16</u> digits:

- (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

- How many items does a hex number represent?
 - $(3A9F)_{16} = 3x16^3 + 10x16^2 + 9x16^1 + 15x16^0 = 14999_{10}$
- What about fractions?
 - $(2D3.5)_{16} = 2x16^2 + 13x16^1 + 3x16^0 + 5x16^{-1} = 723.3125_{10}$
- Note that *each* hexadecimal digit can be represented with four bits.

- (1110) $_2 = (E)_{16}$

• Groups of four bits are called a *nibble*.

- (1110)₂

Putting it all together

Binary	Octal	Decimal	Hexadec.
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

Binary, octal, and hexadecimal similar

-

FACHHOCHSCHULE KIEL University of Applied Sciences

- Easy to build circuits to operate on these representations
- Possible to convert between the three formats

Converting between base 16 and base 2

- Conversion is easy!
 - Determine 4-bit value for each hex digit
- Note that there are 2⁴ = 16 different values of four bits

FACHHOCHSCHULE KIEL University of Applied Science

- Easier to read and write in hexadecimal.
- Representations are equivalent!

FACHHOCHSCHULE KIEL University of Applied Sciences

Converting between base 16 and base 8

- 1. Convert from Base 16 to Base 2
- 2. Regroup bits into groups of three starting from right
- 3. Ignore leading zeros
- 4. Each group of three bits forms an octal digit.

How to represent signed numbers

- Plus and minus sign used for decimal numbers: 25 (or +25), -16, etc.
- For computers, desirable to represent everything as *bits*.
- Three types of signed binary number representations:
 - signed magnitude
 - 1's complement (One's complement)
 - 2's complement (Two's complement)
- In each case: left-most bit indicates sign: positive (0) or negative (1).

Signed magnitude:

One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
 - 1's comp of 00110011 is 11001100
 - 1's comp of 10101010 is 01010101
- For an n bit number N the 1's complement is (2ⁿ-1) N.
- Also called diminished radix complement.
- To find negative of 1's complement number take the 1's complement.

Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
 - 2's comp of 00110011 is 11001101
 - 2's comp of 10101010 is 01010110
- For an n bit number N the 2's complement is $(2^{n}-1) N + 1$.
- Also called radix complement.
- To find negative of 2's complement number take the 2's complement.

• For an n bit number in base (radix) z there are zⁿ different unsigned values.

$$(0, 1, ..., z^{n-1})$$

One's Complement Addition

- Using 1's complement numbers, adding numbers is easy.
- For example, suppose we wish to add $+(1100)_2$ and $+(0001)_2$.
- Let's compute $(12)_{10} + (1)_{10}$.

 $(12)_{10} = +(1100)_2 = 01100_2$ in 1's comp. $(1)_{10} = +(0001)_2 = 00001_2$ in 1's comp.

Step 1: Add binary numbers Step 2: Add carry to low-order bit

One's Complement Subtraction

- Using 1's complement numbers, subtracting numbers is also easy.
- For example, to subtract $+(0001)_2$ from $+(1100)_2$.

Two's Complement Addition

- Using 2's complement numbers, adding numbers is easy.
- For example, suppose we wish to add $+(1100)_2$ and $+(0001)_2$.

FACHHOCHSCHULE

University of Applied Science

• Let's compute $(12)_{10} + (1)_{10}$. $(12)_{10} = +(1100)_2 = 01100_2$ in 2's comp.

$$(1)_{10} = +(0001)_2 = 00001_2$$
 in 2's comp.

Two's Complement Subtraction

- Using 2's complement numbers, follow steps for subtraction
- For example, suppose we wish to subtract $+(0001)_2$ from $+(1100)_2$.

Two's Complement Subtraction: Example 2 • Let's compute $(13)_{10} - (5)_{10}$. $(13)_{10} = +(1101)_2 = (01101)_2$ $(-5)_{10} = -(0101)_2 = (11011)_2$ • Adding these two 5-bit codes: 0 1 1 0 1 + 1 1 0 1 1 ignore carry \longrightarrow 1 0 1 0 0 0 • Discarding the carry bit, the sign bit is seen to be zero, indicating a correct result. Indeed,

 $(01000)_2 = +(1000)_2 = +(8)_{10}$.

Two's Complement Subtraction: Example 3

• Let's compute $(5)_{10} - (12)_{10}$.

```
(-12)_{10} = -(1100)_2 = (10100)_2
```

- $(5)_{10} = +(0101)_2 = (00101)_2$
- Adding these two 5-bit codes...

 Here, there is no carry bit and the sign bit is 1. This indicates a negative result, which is what we expect.
(11001)₂ = -(7)₁₀.

Summary

- Binary numbers can also be represented in octal and hexadecimal
- Easy to convert between binary, octal, and hexadecimal
- Signed numbers represented in signed magnitude, 1's complement, and 2's complement
- 2's complement most important (only 1 representation for zero).
- Important to understand treatment of sign bit for 1's and 2's complement.

Polyadic Systems

All number systems introduced so far belong to the so-called polyadic number systems. A polyadic number system to the base B (also called B-adic number system), is a system in which a number is formed as a sum of powers of B.

A natural number n can be represented as the following sum of powers:

$$n = \sum_{i=0}^{N} b_i \cdot B^i$$

With B as base of the number system: $B \in N, B \ge 2$ and $b_i \in N \cup \{0\}, 0 \le b_i < B$

Polyadic Systems

Thus the number systems can be defined by chosing:

Base	Number System
2	Binary
8	Octal
10	Decimal
16	Hexadecimal

This leads to the system-independent writing:

$$n = (b_N b_{N-1} b_{N-2} \cdots b_1 b_0)_2$$

with:

• leading zeros can be omitted

• when the base is known it can be omitted

